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ABSTRACT

Transformer-based ranking models have evolved over the last few
years as technology has evolved, improving ranking models in
performance and efficiency. Despite these performance updates,
the computational costs of these traditional transformer-based
ranking models have increased. To further optimize the perfor-
mance of these ranking models, several transformer-based models
were proposed including the EARL framework. The Embed Ahead
Rank Later (EARL) framework speeds up traditional rankers by
pre-computing representations and keeping online computation
shallow. To facilitate ranking, the ranker is separated into three
independent tasks, thus enabling much of the computation work
to be done offline. We have implemented the EARL framework and
measured its performance on a computer with relatively limited
computational power. In this report, the effectiveness of the EARL
framework along with its accuracy and performance is presented.
The advantages over traditional transformer-based models such as
BERT as also discussed.

1 INTRODUCTION

1.1 Motivation

Information retrieval technologies such as search engines are ubiq-
uitous in today’s world. Modern search engines can retrieve and
rank billions of results relevant to users’ input in fractions of a
second. These search engines are constantly looking at ways of
refining their ranking algorithms and frameworks in order to get
the most relevant data to users in the shortest amount of time. Thus,
it is apparent that a robust yet efficient ranking algorithm is crucial
in the operation of these search engines.

1.2 Previous Work

Traditionally, document ranking for a given corpus and query was
done using a framework which was a combination of smaller algo-
rithms and components [1] [2]. These components form a larger
prediction model that would rank the documents. However, there
are problems associated with this approach: each constituent model
needs to be trained and tuned separately, and significant super-
vision is required for them. Therefore, it is desirable to adopt an
end-to-end solution that can be trained and deployed efficiently.
To tackle this problem, there has been a recent rise in the use of
neural networks for ranking the relationship between two entities
[3]. The current state-of-the-art models in this field of information
retrieval are transformer-based ranking models. Transformers are
deep learning models used primarily in the field of natural lan-
guage processing (NLP). In basic terms, transformers take in some
sequence as input and then transform that input into a different

sequence representation [4]. Devlin et al. proposed a model that
pre-trains the representations from unlabeled documents called
Bidirectional Encoder Representations from Transformers (BERT)
[5]. However, BERT still experiences trade-off between processing
time and ranking performance. Therefore, it is necessary to further
optimize the pre-training and ranking strategy to minimize this
trade-off and achieve better performance.

1.3 Methods and Results

One possible way to improve the performance is to pre-compute
wherever possible so that online relevance judging can be as light
as possible. Towards this goal, Luyu Gao, Zhuyun Dai, and Jamie
Callan proposed the Embed Ahead Rank Later (EARL) framework
[6] that breaks down the attention [7] in typical transformer archi-
tecture into three asynchronous tasks. By unraveling the blackbox
that is normally seen in transformer-based models into three dis-
tinct modules, we can run the modules to pre-compute the query
and document representations. This decreases the processing time
taken as only one module has to be computed online. With EARL,
it is possible to achieve 50 to 120 times speedup on a dedicated
graphics processing unit (GPU) compared to BERT counterparts.

1.4 Contributions

Through transformers and attention models, we were able to im-
plement EARL and create the three modules: Document Under-
standing Module, Query Understanding Module, and Relevance
Judging Module. In this report we present our implementation of
the EARL model as presented in the paper. We go on to compare
our findings of the efficiency and effectiveness of our EARL model
implementation with the efficiency and effectiveness of the EARL
model produced in the original paper. Furthermore, we evaluated
the effectiveness of the EARL model compared to the BERT model.

2 SOLUTION

In this section, we provide an in-depth explanation of the meth-
ods and techniques used throughout the project. The models and
how they were implemented are discussed in detail. EARL as a
framework is defined and explored in this section.

2.1 Notations

Many of the notations used in the original EARL paper are described
here for clarity. Attention is written among three matrices: X, Y
and Z as Attention(X,Y, Z) [7]. This function is defined as:
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Similarly, multihead attention among the X, Y, and Z matrices is
denoted as MH(X, Y, Z) [7]. This function is defined as:

MH(X,Y, Z) = MH(heady, ..., heady)W°
head; = Attention(XW.., YW{}, ZWé)

The feed-forward neural network is denoted as FFN(x) and the
function is defined as follows [7]:

FFN(x) = ReLU(xW1 + b1)W2 + b2

In each layer we see a normalization function with input x and this
is written as Norm(x).

Using these notations, the EARL framework is explained.

2.2 The EARL Framework

Typical transformers use a blackbox process which takes a concate-
nated version of the query and document and then applies a string
of attention operations on itself [11]. The last layer of self-attention
will output the relevance prediction. Unfortunately, because of the
blackbox nature of this process, the hidden states have no explicit
semantic meanings. This results in slow rankers and the overall
design remains difficult to understand in terms of what exactly is
happening in our strings of attention.
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The researchers who proposed the EARL model assume that the
blackbox process could be made simpler by decompiling the black-
box process. It is assumed that typical rankers perform document
representation and query representation together as it interprets
the pair together. The beauty of EARL is that we separate the doc-
ument and query understanding into two separate pre-processed
modules. Not only does this allow us to save time during online
processing, but it also gives us some much needed transparency
and semantic meanings to the output of our layers.
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Figure 1 illustrates the architecture of EARL excluding layer nor-
malization [6]. We see the ranking task has been divided into three
parts: document understanding, query understanding, and rele-
vance judging. For all documents in a corpus, we can run the docu-
ment understanding once offline. Similarly, query understanding
only needs to be run the first time a given query is seen. Figure 2
is a detailed representation of how attention in EARL works [7].
The document and query modules are the same as a transformer
encoder, while the relevance judging module applies a query-to-
document cross-attention followed by a query-side self attention.

We can describe our document and query token representations as
the following [6]:
D = Tyoe(doc)

0= Tqry(qr y)
We can describe the judger block that looks up the representations
and model the attention between the two tokens to output a score
for the document as the following [6]:

score(qry, doc) = Tjygge(Q, D)

2.3 Document Understanding Module

The document understanding module is one of the three modules
in this ranker. This module builds document token representations
using a Transformer model. These representation tokens are inde-
pendent of the query. As a result, we can calculate all the tokens
for all documents ahead of time due to their query-agnostic nature.
These tokens can then be cached, and these cached tokens can
be used for the entire ranking process. This means we only need
to run the module once for the entire corpus. Furthermore, this
module can be run before accepting any queries and performing
any ranking, meaning the computation of tokens from this module
is done “offline” as they are pre-computed.
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In Figure 2, we can see that the document understanding module
is the same as an encoder. We embed an input of length d with an
embedding function to get an embedding matrix E4,. [6].

Eg4oc = embedy,.(document)

We then process each of the embeddings with a series of M trans-
former blocks, leaving us with Hy, ..., Hys hidden layers. Each layer
is further encoded with the previous layer where [6]:

Hldoc = Encoderl”loC (Hld_of)

Hiioc = Encoderiioc (Egoc)

Each encoder is distinct and takes advantage of the multihead
function, feed forward neural network, and normalization function
defined earlier [7].

Al = Norm(MH(H[¢, Hi°¢, H°¢) + H{o%)

Encoderfoc (Hldflc) = Norm(FFN(Al) + Al)

The output of the last layer is what we will use for the final docu-
ment representation denoted as D = Hy;. D is a series of d token
embeddings of size n. These tokens get used in the later relevance
judging module.

2.4 Query Understanding Module

The query understanding module is used to process the input query
with a transformer encoder. In this module, each query is trans-
formed into a token-level representation. The process for calculat-
ing tokens is similar to that of the document understanding module:
the query is embedded as input and a token-level representation is
output to be used for the relevance judging module. Unlike in the
Document Understanding Module, not all queries are given ahead
of time. As a result, we will have to run this module more than
once. However, similar to the Document Understanding Module,
the token representation for a given query will always remain the
same. Because of this, once a representation is generated for a given
query, this representation can be cached. This way, if this same
query is used at a later time, we do not need to rerun the Query
Understanding Module and can instead use the cached query token
representation.

We obtain these tokens in a d - n matrix Egry [6].
Egry = embedgry(query)

A series of transformer encoders are used to process the token em-
beddings into a set of hidden query representations, H;]ry, ...Hzlry
[6]:

qury = Encoder;]ry(qu_l)
Hfry = Encoder;]ry(Eqry)

The output from the last layer of the transformer is used as the
final query representation of size q - n, containing a sequence of
q contextualized token embeddings for a query of length q. The
encoders are the same as the functions defined in the previous
module but with respect to the query rather than the document.
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2.5 Relevance Judging Module

The relevance judging module is the final module. This module
takes in the token-level representations from both the query under-
standing module and document understanding module. It uses a
judger block to improve the standard Transformer technique and
compute the relevance between query and document.

The judger block, proposed in the original EARL paper [6], only
performs cross attention from query to document and self atten-
tion on the query tokens. This completely avoids document self
attention and document to query cross attention [6].

Qcross = Norm(MH(Q, D, D) + Q)

Qself = Norm(MH(Qcrosss Qcross> Qcross) + Qcross)

As a result, we end up with gd attention pairs from cross attention
and ¢? attention pairs from our self attention while avoiding d?
document attention pairs from the standard Transformer technique.
This helps to improve our computation time significantly.

Multiple judger block layers are computed to repeat the process
and refine the hidden token representations giving us hidden states
Hy, ..., Hi such that [6]:

HlJ = ]udgerl] (Hlj

D)

H{ = ]udger{ (Q,D)
Finally, the score is created through a linear projection by pooling
the last layer’s query token representation [6].

score(qry, doc) = wTPool(HI]%)

3 RESULTS

3.1 Setup

We use the MS MARCO Dataset to test the effectiveness and ef-
ficiency of our algorithm. MS MARCO is a collection of datasets
focused on deep learning in search. We are specifically using the
Dev Queries subset of this larger MS MARCO dataset. We chose
a single specific subset of this larger dataset so that we could get
results for our model in a reasonable amount of time. We chose the
Dev Queries subset as this subset has a single relevant document
with a binary relevance label, allowing for us to easily determine
accuracy of our predictions. Following P. Bajaj et al [13], we calcu-
late the mean reciprocal rank of the top 10 ranked items (MRR@10)
to determine the accuracy of our model.

We compare the results of the EARL model to the results of the
BERT model on this same dataset. EARL is trained using stochastic
gradient descent with a batch size of 128. We also use the AdamW
optimizer with a learning rate of 3¢~ and a warmup of 1,000 steps.
These parameters were chosen as they are the parameters used in
the original EARL paper. Our BERT model is trained using similar
parameters. We did not develop our BERT model, but instead used
an existing BERT framework that we found already implemented
in PyTorch.

Given our two models, we aim to prove that EARL achieves the
same effectiveness as BERT, while also showing EARL to be more
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efficient than BERT. Furthermore, we attempt to duplicate the effec-
tiveness and efficiency of EARL as seen in the paper while running
our implementation of the EARL model with significantly less com-
putational resources.

3.2 Ranking Effectiveness

Model Accuracy M5 MARCO Passage Ranking
MRR @ 10 Our Model Paper Model
BERT ranker 0.3180 0.3527
EARL ClsPool 0.3086 0.3442
EARL AvePool 0.3116 0.3415
EARL ClsPool Tied 0.3126 0.3456
EARL AvePool Tied 0.3217 0.3468
Figure 3

Figure 3 shows the ranking accuracy of our implementation as
compared to the results shown in the original paper. In all the
models, our implementation is around 10% less accurate than the
implementation results from the paper. Given our lower computa-
tional resource capacity, this makes sense. Because of our limited
resources as compared to the original paper, our implementation
most likely had less hidden layers than the implementation used in
the paper. As a result, it would take more iterations for our model
to reach the accuracies seen from the paper.

When comparing the accuracy of our EARL model implementation
to our BERT model implementation, we see that our EARL model
not only kept up with the same accuracy as the BERT model, but
in some cases surpassed the BERT ranker’s accuracy. This shows
that EARL has maintained the same ranking effectiveness as BERT,
showing that EARL can keep up in effectiveness with the leading
state-of-the-art information retrieval models.

3.3 Ranking Efficiency

Evaluation Time (s) cPU
1 query / 1k docs Qur Model Paper Madel
Document Length EARL BERT _ Speedup| EARL BERT | Speedup
128 309234 717185  18.28 8.11 16151 19.91
256 56043  14685.65 2579 12.39 349.7 28.22
512 858.65 27308.64 30.39 15.99 698.01 34.92
Figure 4

Figure 4 displays the time taken to run our implementation and the
original paper’s implementation of BERT and EARL on a CPU. We
vary the number of words per document in the corpus in order to
see how our model scales in comparison to the BERT model.

When we compare the efficiency of our implementation of the
BERT and EARL model to the efficiency of the original paper’s im-
plementation of the BERT and EARL model, we see that our BERT
model ran 39 to 44 times slower than the paper’s implementation
of the BERT model. Similarly, our EARL model took 44 to 48 times
as much time to run than the paper’s implementation of the EARL

Joshua O’Callaghan

model. We attribute this to the computational power of our CPU
in comparison to the CPU used by the researchers in the original
paper. Our model was run on an Intel i5 processor, while the paper’s
model was run on an Intel Xeon processor. Given the increased
amount of cores a Xeon processor has compared to an i5 processor,
it is easy to see how the EARL and BERT models implemented
in the paper would outperform the EARL and BERT models we
implemented.

When we compare the efficiency of our implementation of the
EARL framework in relation to the efficiency of our implementa-
tion of the BERT model, we see speedups in the range of 18 to
30 times. Despite our lower computational resources, we see that
our EARL model still outperforms the BERT model in terms of
efficiency. Figure 5, similarly to figure 4, displays the time taken to

Evaluation Time (s) GPU
1query / 1k docs Our Model Paper Model
Document Length EARL BERT _ Speedup| EARL BERT _ Speedup
128 32.57 1739.8%4 53.42013| 0.05 27 54
256 47.13 3132.731 6647 0.07 5.78 82.57143
512 58,77 7035581 119.7138 0.1 13.05 130.5
Figure 5

run our implementation and the original paper’s implementation
of BERT and EARL. However, this table shows the time taken to
execute the models on a GPU. When we compare the efficiency
of our implementation of the BERT and EARL models to the effi-
ciency of the original paper’s models, we see that our models take
hundreds of times longer to run. Similar to our explanation of the
CPU results, we believe this discrepancy is due to differences in our
GPU hardware’s capabilities. The original paper states that their
models were run on an Nvidia RTX 2080. Our models were run on
an Nvidia GTX 1070. Therefore, our results are inline with what is
expected given our more limited computing resources.

When we compare the efficiency of our implementation of the
EARL framework in relation to the efficiency of our implementa-
tion of the BERT model on GPU, we see speedups in the range of
50-120 times. This once again shows that the EARL framework is
more efficient than the BERT framework.

3.4 Results Summary

As shown in the two previous sections, EARL is able to maintain
the same ranking effectiveness as BERT while actually increasing
the ranking efficiency. Furthermore, for executions on both CPU
and GPU, we see that our speedup factor increases as the length of
documents increases. This further illustrates that the EARL frame-
work is a more scalable solution than the BERT framework. In
conclusion, we see that we were able to successfully implement
the EARL model as shown in the original paper, and we were able
to show that EARL provides a more scalable and efficient ranking
algorithm than BERT, while not sacrificing on the effectiveness of
state-of-the-art information retrieval models.
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4 PERSONAL CONTRIBUTIONS

Personally, I helped throughout the entirety of the course. Like
all other members, I annotated and read through the EARL pa-
per initially to obtain a clear understanding of the strategies used
and the goal we were aiming to complete. After splitting up the
programming portions, I decided to take lead on the Document
Understanding Module and completed it with the help of Pratik’s
implementation of the Query Understanding Module. I also assisted
with programming the driver code and integration of the modules.
The majority of the project work was done in the testing phase
where we bench-marked our implementation using data from the
MS Marco dataset. Along with my other group members i partook
in testing and running our code on multiple devices. Finally, I took
lead on writing the report which I completed with the rest of my
group mates.

As part of some extra work I decided to use servers that I have
access to at my job to run this project on to see whether or not our
results would improve. My work proved to show an improvement
on the efficiency and effectiveness of our code but still fell short
of what was written in the paper. This proved two things to me,
that our system was a bottleneck to our implementation and our
code was not as effective as the paper. The system that I had run
it on had much better specs than what was used in the paper. I
hypothesize that because of some of the design aspects we skipped
in the original implementation, our version suffered as a result.

5 CONCLUSION

Neural ranking proves to be very promising and we are excited to
see the path it takes to improve current search engines with higher
performance and less computational complexity. Throughout this
project, we were able to recreate the implementation of EARL and
approximate the results produced in the original paper. We im-
plemented the three separate modules: document understanding,
query understanding, and relevance judging. EARL takes advantage
of the fact that document understanding and query understanding
can be computed once and then reused. This allows us to build our
document representations beforehand, thus improving our ranking
time. We also implement a new judger transformer block which
helps us keep our online computations light and shallow.

5.1 Reflections

Many times while implementing the EARL model, we became
stumped because either the implementation described in the origi-
nal paper was unclear, or the PyTorch modules were not working
together properly. These issues were exacerbated by simply not
having enough background knowledge in this field and having to
find adjacent papers to supplement our knowledge. In the end, we
gained a much greater understanding of transformer-based mod-
els and produced results that outperformed what we thought we
would be able to achieve. This project has taught us about feed
forward neural networks, as well as the concept of attention and
transformers. We were also able to explore many of the robust fea-
tures that the python library PyTorch offers in the realm of machine
learning. Furthermore, we learned about BERT, EARL, and other
implementations of document rankers that have been implemented
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over the years. We also explored the intricacies and vastness of the
MS MARCO dataset. Finally, we learned the importance of docu-
ment rankers, search engines, and how all the work being done in
this field now will greatly impact how data is organized and filtered
in the future.

5.2 Skills Gained

Over the course of the semester I learned a great deal about Machine
Learning. This course taught me many aspects of Machine Learning
such as classifiers and the statistical methods behind them. This
project introduced concepts of transformers, neural networks and
rankers. I gained a lot of expertise with the PyTorch library which
I am excited to use in the future.

5.3 Group Members

My team members were: Xuanli Lin, Pratik Panda, Nishant Ravin-
uthala, and Cody Schierbeck. I am thankful for such a committed
group and without them this project would not have been possible.
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